
SMART CONTRACT AUDIT

Dec 31st, 2021 | v. 1.0

98
Score

PASS
Zokyo’s Security Team has
concluded that this smart contract
passes security qualifications to be
listed on digital asset exchanges.

This document outlines the overall security of the Uplift smart contracts, evaluated by Zokyo's
Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Uplift smart contract codebase for
quality, security, and correctness.

. . .

1

Uplift Contract Audit

There was 1 critical issue found during the audit.

Contract Status

low Risk

Testable Code

The testable code is 99.81%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and
rapidly changing environment, we at Zokyo recommend that the Uplift team put in place a
bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

. . .

2

Uplift Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Complete​ ​Analysis

11Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

11Tests written by Upflit team

17Tests written by Zokyo Secured team

3

Uplift Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract’s source code was taken from the Uplift archive hash.

. . .

Archive hash:
0c645485fc66100f8eb75f4332661b62babec91a831af204c72a6e007e280dd8

Last commit:
https://github.com/mariabeyrak/staking-uplift/
commit/6817b52d56efb2a4976bfacbbde802708abcb487

Contracts:

Staking;
ThrottledPool;
StakingPool;
IdPool;
Pool.

https://github.com/mariabeyrak/staking-uplift/commit/6817b52d56efb2a4976bfacbbde802708abcb487
https://github.com/mariabeyrak/staking-uplift/commit/6817b52d56efb2a4976bfacbbde802708abcb487

4

Uplift Contract Audit

. . .

Zokyo's Security Team has followed best practices and industry-standard techniques to verify
the implementation of Uplift smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Summary

. . .

5

Uplift Contract Audit

The Zokyo team has conducted a security audit of the given codebase. All the findings within
the auditing process are presented in this document.

There was 1 critical issue found during the auditing process. 1 high, 2 medium, and 2
informational issues were found. All of the issues found have been resolved by the Uplift
team. During the audit, progress was changed to a logic of contacts and some issues are not
relevant.

Hence, the score of the audit is set to 98 to the provided codebase.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

Uplift Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Complete​ ​Analysis

. . .

7

Uplift Contract Audit

Method _stake of contract Staking has Incorrect nextTierIndex
calculation

critical

Snippet:

uint8 nextTierIndex = _row * (rowsCount + 1) + _column;

Recommendation:
For the last two tiers, nextTierIndex will exceed the array length of tierSnapshots_.

Solidity compiler pragma is not pointing to the exact version

medium

Recommendation:
Define specific Solidity compiler version in pragma keyword.

State variable minReferrerStakeAmount could be defined by
contract owner and influence being as referral

high

Recommendation:
Add details on minimal staking amount to be qualified as referral.

. . .

8

Uplift Contract Audit

Method canParticipate of contract Staking is not used

medium

It is a bad approach to include methods that are not utilized by Smart contracts, as they
increase deployed byte code.

Recommendation:
Remove unnecessary methods from the smart contract.

Comment:
It is used for further development.

Staking contract could be upgraded by the contract owner

Informational

The contract owner has a right to upgrade this smart contract. Hence, that may lead to
potential vulnerability after SC upgrade so that there is room for having potential operational
or security issues.

Recommendation:
Remove the permission to upgrade the contract by the contract owner.

Smart contract is not covered by NatSpec annotations

Informational

Recommendation:
Cover by NatSpec all Contract methods.

. . .

9

Uplift Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Staking

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pool

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

IdPool

. . .

10

Uplift Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

ThrottledPool

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

StakingPool

. . .

11

Uplift Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests are written by the Uplift team

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

FILE

contracts\

ReferrersData.sol

BaseProxy.sol

UNCOVERED LINES

Registry.sol

IdPool.sol

Staking.sol

LIFT.sol

94.37

73.68

100.00

% STMTS

100.00

100.00

97.22

100.00

87.50

60.00

100.00

% BRANCH

100.00

79.17

91.46

100.00

90.00

57.14

100.00

% FUNCS

100.00

100.00

96.97

100.00

94.66

97.25

100.00

100.00

100.00

75.00

100.00

StakingPool.sol

MerkleTreeWhitelist.sol

ThrottledPool.sol

Pool.sol

100.00

59.09

94.44

100.00

100.00

50.00

93.75

90.91

100.00

50.00

83.33

100.00

100.00

59.09

95.24

100.00

... 46,47,56,74

24,25,29,30,31

... 257,373,578

34,35

% LINES

All files 94.37 87.50 90.00 94.66

. . .

12

Uplift Contract Audit

Test Results

Contract: IdPool
✓ mintForId:restricted
✓ burnForId:restricted
✓ mint:withdraw:2:one account
✓ mint:withdraw:2:two accounts

LIFT
✓ name, symbol, decimals
✓ INITIAL_SUPPLY
✓ MAX_SUPPLY
✓ mint
✓ burn
✓ grantRole, revokeRole
✓ changeOwner
✓ permit

Pool
✓ setToken:restricted
✓ setToken:invalid
✓ setToken:success
✓ balanceOf, totalBalanceOf, totalSupply, withdraw, withdrawableRewardsOf
✓ mint:withdraw:2:one account

Staking
✓ initialize
✓ setMinTierReferrerBooster:restricted
✓ setMinTierReferrerBooster:invalid
✓ setMinTierReferrerBooster
✓ stake:invalid amount
✓ stake:zero
✓ stake:no time:less than 100
✓ stake:no time:exact amount
✓ stake:no time:between two tiers
✓ stake:unstake:no ref
✓ stake:unstake:linear:less than first tier
✓ stake:unstake:between two tiers
✓ stake:unstake:linear:between two tiers
✓ stake:unstake:linear:between two last tiers
✓ stake:unstake:linear:last tier

. . .

13

Uplift Contract Audit

✓ stake:unstake:linear:more than last tier
✓ stake:invalid params
✓ stake user:stake referrer:stake user 2:unstake user1
✓ stake:unstake:invalid id
✓ stake:unstake:early exit
1) stake:unstake:early exit:exact tier:no ref
2) stake:unstake:early exit:exact tier:ref
✓ stake:unstake:early exit:less than first tier
3) stake:unstake:early exit:between two tiers
✓ stake:unstake:early exit:more than last tier
✓ stake:self referring
✓ stake:circle referring
✓ stake:invalid referrer
✓ stakeWithPermit
4) stake:max referrer booster
✓ stake1:stake2:unstake1

✓ changeTiers:restricted
✓ changeTiers:invalid arguments
✓ changeTiers
✓ stake:changeTiers:stake:unstake first

✓ initialize
✓ set:stakingPowerInitialBreak:participationBreak
✓ stakingPower flow
✓ updateStakingPower:10 times:setParticipationBreak:burnStakingPower

✓ setWhitelist
✓ setMinReferrerStakeAmount
✓ kyc

Contract: StakingPool
✓ mintForId:burnForId:restricted
✓ mint:burn:mintForId:withdraw:withdrawForId:restricted
✓ mint:withdrawForAccount:restricted
✓ mint:withdrawForAccount:100 percent
✓ mint:withdrawForAccount:50 percent
✓ mint:withdrawForAccount:invalid amount
✓ mint:withdrawForAccount:fee
✓ mint:withdrawForAccount:invalid fee

. . .

14

Uplift Contract Audit

StakingUpgradeability
✓ upgradeability
✓ upgradeability:owner

ThrottledPool
✓ setEmissionController:restricted
✓ setEmissionController:invalid
✓ setEmissionController:success
✓ mint:withdrawableRewardsOf:withdraw:mint2:withdraw2:less than total
✓ mint:withdrawableRewardsOf:withdraw:more than total

70 passing (3m)

1) Staking

 stake:unstake:early exit:exact tier:no ref:

 AssertionError: Expected "1289682143564356435643562" to be equal
1289681148514851485148512

 + expected - actual

 {

 - "_hex": "0x011119c1519eaeb3486560"

 + "_hex": "0x011119cf20beef67c90caa"

 "_isBigNumber": true

 }

 at assertArgsArraysEqual (node_modules/@ethereum-waffle/chai/dist/cjs/matchers/emit.js:58:54)

 at tryAssertArgsArraysEqual (node_modules/@ethereum-waffle/chai/dist/cjs/matchers/emit.js:65:20)

 at /home/romario/Work/Audit/new-uplift/staking-uplift/node_modules/@ethereum-waffle/chai/dist/
cjs/matchers/emit.js:77:13

 at runMicrotasks (<anonymous>)

 at processTicksAndRejections (internal/process/task_queues.js:97:5)

 at runNextTicks (internal/process/task_queues.js:66:3)

 at listOnTimeout (internal/timers.js:523:9)

 at processTimers (internal/timers.js:497:7)

2) Staking

 stake:unstake:early exit:exact tier:ref:

. . .

15

Uplift Contract Audit

 AssertionError: Expected "1289682143564356435643562" to be equal
1289681148514851485148512

 + expected - actual

 {

 - "_hex": "0x011119c1519eaeb3486560"

 + "_hex": "0x011119cf20beef67c90caa"

 "_isBigNumber": true

 }

 at assertArgsArraysEqual (node_modules/@ethereum-waffle/chai/dist/cjs/matchers/emit.js:58:54)

 at tryAssertArgsArraysEqual (node_modules/@ethereum-waffle/chai/dist/cjs/matchers/
emit.js:65:20)

 at /home/romario/Work/Audit/new-uplift/staking-uplift/node_modules/@ethereum-waffle/chai/
dist/cjs/matchers/emit.js:77:13

 at runMicrotasks (<anonymous>)

 at processTicksAndRejections (internal/process/task_queues.js:97:5)

 at runNextTicks (internal/process/task_queues.js:66:3)

 at listOnTimeout (internal/timers.js:523:9)

 at processTimers (internal/timers.js:497:7)

3) Staking

 stake:unstake:early exit:between two tiers:

 AssertionError: Expected "20697519708157248157248155" to be equal
20697518710024570024570022

 + expected - actual

 {

 - "_hex": "0x111edebcce556610152ca6"

 + "_hex": "0x111edecaa869c7f6e3ea9b"

 "_isBigNumber": true

 }

 at assertArgsArraysEqual (node_modules/@ethereum-waffle/chai/dist/cjs/matchers/emit.js:58:54)

at tryAssertArgsArraysEqual (node_modules/@ethereum-waffle/chai/dist/cjs/matchers/emit.js:65:20)

 at /home/romario/Work/Audit/new-uplift/staking-uplift/node_modules/@ethereum-waffle/chai/
dist/cjs/matchers/emit.js:77:13

 at runMicrotasks (<anonymous>)

. . .

16

Uplift Contract Audit

 at processTicksAndRejections (internal/process/task_queues.js:97:5)

 at runNextTicks (internal/process/task_queues.js:66:3)

 at listOnTimeout (internal/timers.js:523:9)

 at processTimers (internal/timers.js:497:7)

4) Staking

 stake:max referrer booster:

 Error: Timeout of 20000ms exceeded. For async tests and hooks, ensure "done()" is called; if
returning a Promise, ensure it resolves. (/home/romario/Work/Audit/new-uplift/staking-uplift/test/
Staking.ts)

 at listOnTimeout (internal/timers.js:554:17)

 at processTimers (internal/timers.js:497:7)

. . .

17

Uplift Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests written by Zokyo Security team

As part of our work assisting Uplift in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the Uplift contract
requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

FILE UNCOVERED LINES

Registry.sol

IdPool.sol

Staking.sol

% STMTS

100.00

100.00

98.88

% BRANCH

100.00

91.67

93.75

% FUNCS

100.00

100.00

100.00 98.90

100.00

100.00

StakingPool.sol

ThrottledPool.sol

Pool.sol

100.00

94.44

100.00

100.00

100.00

95.45

100.00

100.00

100.00

100.00

100.00

100.00

378,521

34,35

% LINES

All files 99.81 96.81 100.00 99.42

. . .

18

Uplift Contract Audit

Test Results

Contract: IdPool
Check constructor

✓ should revert if registry zero address
✓ should revert if token zero address
✓ should set registry address
✓ should set token address

Check constructor
mintForId

✓ should revert if not the owner
✓ should increase balance if _totalAmount > 0
✓ should increase totalSupply if _totalAmount > 0
✓ should increase idBalanceOf if _idAmount > 0
✓ should increase accountTotalSupply if _idAmount > 0
✓ should catch event Mint, and MintForId

check withdrawableRewardsOf & withdrawableRewardsForId
✓ should calculate correct amount for both users

 burnForId
✓ should revert if not the owner
✓ should decrease balance if _totalAmount > 0
✓ should decrease totalSupply if _totalAmount > 0
✓ should decrease idBalanceOf if _idAmount > 0
✓ should decrease accountTotalSupply if _idAmount > 0
✓ should catch event BurnForId
check withdrawableRewardsOf & withdrawableRewardsForId

✓ should calculate correct amount for both users (691ms)
 withdrawForId

1) should update { tokenRewardsOf[account] & idTokenRewardsOf[account][_id] }
✓ should transfer reward
✓ should catch event WithdrawForId

withdrawableRewardsForId
2) should return correct withdrawable rewards

 IdPool
Check constructor
✓ should revert if registry zero address
✓ should revert if token zero address

. . .

19

Uplift Contract Audit

✓ should set registry address
✓ should set token address
Check functions:

✓ should revert if zero address
✓ should set token address
✓ should catch event SetToken

✓ should revert if not the owner
✓ should increase balance
✓ should increase totalSupply
✓ should catch event Mint
check withdrawableRewardsOf

✓ should calculate correct amount for both users

✓ should revert if not the owner
✓ should decrease balance
✓ should decrease totalSupply
✓ should catch event Burn
check withdrawableRewardsOf

✓ should calculate correct amount for both users

✓ should calculate reward correctly
✓ should update { tokenRewardsOf[account] }
✓ should transfer reward
✓ should catch event Withdraw

✓ should return correct withdrawable rewards

Staking
Check functions:

initialize
✓ should initialize correctly
✓ should revert if contract already initialized
✓ should revert if address of parameters is zero's address
✓ should revert if parameters of tier is invalid
✓ should revert if previous tier more than next tier
setWhitelist
✓ should set whitelist correctly

. . .

20

Uplift Contract Audit

✓ should revert if caller haven't role of admin

✓ should set staking power data correctly
✓ should set staking power data correctly
✓ should revert if caller haven't role of admin

✓ should set min tier referrer booster correctly
✓ should revert if new value more than length of tier

✓ should set min referrer stake amount correctly

✓ should set last participation date correctly

✓ should update staking power correctly
✓ should revert if id is invalid

✓ should set last registration date correctly

✓ should do stake correctly
✓ should get info about stakes correctly
✓ should do stake correctly if not last tier
✓ should revert if amount is invalid in last tier
✓ should revert if amount of stakeInfo is invalid where not last tier
✓ should revert if amount of stake is zero

✓ should do unstake correctly
✓ should do unstake correctly if stakingPower of caller more than zero
✓ should do unstake correctly if earlyExitFee more than zero
✓ should do unstake correctly if early exit
✓ should do unstake correctly with not receive booster
✓ should revert if id is zero
✓ should receive correct value of startBoosterInBP while unstake

✓ should do stake with referrer correctly
✓ should do stake with referrer correctly if referrer is zero's address
✓ should update referral booster for stake correctly
✓ should receive correct referral booster while stake
✓ should revert if amount is zero
✓ should revert if amount is zero

. . .

21

Uplift Contract Audit

✓ should revert if referring not valid

✓ should do stake with permit correctly

✓ should do stake with permit with referrer correctly
_authorizeUpgrade

✓ should revert if caller isn't admin

✓ vesting period is zero
✓ tier 1, vesting period 6 months
✓ tier 2, vesting period 48 months
✓ tier 3, vesting period 3 months

3) should calculate referralBoosterInBP for parent correctly
(stakeWithPermitWithReferrer)

✓ should calculate referralBoosterInBP for parent correctly (stakeWithReferrer)

StakingPool
Check constructor

✓ should revert if registry zero address
✓ should revert if token zero address
✓ should revert emissionController zero address
✓ should set registry address
✓ should set token address
✓ should set emissionController address

Check constructor
mintForId
✓ should revert if not the manager
✓ should increase balance if _totalAmount > 0
✓ should increase totalSupply if _totalAmount > 0
✓ should increase idBalanceOf if _idAmount > 0
✓ should increase accountTotalSupply if _idAmount > 0
✓ should catch event Mint, and MintForId
burnForId
✓ should revert if not the owner
✓ should decrease balance if _totalAmount > 0
✓ should decrease totalSupply if _totalAmount > 0
✓ should decrease idBalanceOf if _idAmount > 0
✓ should decrease accountTotalSupply if _idAmount > 0

. . .

22

Uplift Contract Audit

✓ should catch event BurnForId
withdraw
✓ should revert
withdrawForId
✓ should revert
withdrawForAccount
✓ should revert if invalid amount
✓ should withdraw all reward
✓ should withdraw part of reward
✓ should withdraw correctly with fee

ThrottledPool
Check constructor

✓ should revert if registry zero address
✓ should revert if token zero address
✓ should revert emissionController zero address
✓ should set registry address
✓ should set token address
✓ should set emissionController address

Check functions:
setEmissionController
✓ should revert if not the owner
✓ should revert emissionController zero address
✓ should catch event SetEmissionController
setTokensPerSeconds
✓ should revert if not the owner
✓ should catch event SetTokensPerSeconds
withdrawableRewardsForId
✓ should return correct withdrawable rewards if total reward > distributed reward
✓ should return correct withdrawable rewards if total reward < distributed reward
✓ should return correct withdrawable rewards

124 passing (2m)

1) IdPool

 Check functions:

 withdrawForId

 should update { tokenRewardsOf[account] & idTokenRewardsOf[account][_id] }:

. . .

23

Uplift Contract Audit

 Error: VM Exception while processing transaction: reverted with panic code 0x11 (Arithmetic
operation underflowed or overflowed outside of an unchecked block)

 at IdPool._withdrawableRewardsOf (contracts/IdPool.sol:110)

 at IdPool.withdrawableRewardsForId (contracts/IdPool.sol:57)

 at processTicksAndRejections (internal/process/task_queues.js:97:5)

 at runNextTicks (internal/process/task_queues.js:66:3)

 at listOnTimeout (internal/timers.js:523:9)

 at processTimers (internal/timers.js:497:7)

 at HardhatNode.runCall (node_modules/hardhat/src/internal/hardhat-network/provider/
node.ts:534:20)

 at EthModule._callAction (node_modules/hardhat/src/internal/hardhat-network/provider/modules/
eth.ts:353:9)

 at HardhatNetworkProvider.request (node_modules/hardhat/src/internal/hardhat-network/
provider/provider.ts:117:18)

 at EthersProviderWrapper.send (node_modules/hardhat-deploy-ethers/src/internal/ethers-provider-
wrapper.ts:13:20)

 2) IdPool

 Check functions:

 withdrawableRewardsForId

 should return correct withdrawable rewards:

 AssertionError: Expected "550000000000000000000" to be equal 1075000000000000000000

 at /home/romario/Work/Audit/UpLift-last-test/staking-uplift/test/IdPool.test.ts:371:88

 at step (test/IdPool.test.ts:52:23)

 at Object.next (test/IdPool.test.ts:33:53)

 at fulfilled (test/IdPool.test.ts:24:58)

 at processTicksAndRejections (internal/process/task_queues.js:97:5)

 3) Staking

 Check functions:

 should calculate correctly when:

 should calculate referralBoosterInBP for parent correctly (stakeWithPermitWithReferrer):

 AssertionError: expected 0 to equal 1

 + expected - actual

 -0

 +1

. . .

24

Uplift Contract Audit

 at /home/romario/Work/Audit/UpLift-last-test/staking-uplift/test/Staking.test.ts:1291:83

 at step (test/Staking.test.ts:52:23)

 at Object.next (test/Staking.test.ts:33:53)

 at fulfilled (test/Staking.test.ts:24:58)

 at runMicrotasks (<anonymous>)

 at processTicksAndRejections (internal/process/task_queues.js:97:5)

 at runNextTicks (internal/process/task_queues.js:66:3)

 at listOnTimeout (internal/timers.js:523:9)

 at processTimers (internal/timers.js:497:7)

We are grateful to have been given the opportunity to work
with the Uplift team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the Uplift team put
in place a bug bounty program to encourage further analysis
of the smart contract by third parties.

